Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
उत्तर
Let I = `int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
= `int_(pi/3)^(pi/2) sqrt(2cos^2 x/2)/(2sin^2 x/2)^(5/2) "d"x`
= `int_(pi/3)^(pi/2) (sqrt(2) cos x/2)/((2)^(5/2) sin^5 x/2) "d"x`
= `1/4 int_(pi/3)^(pi/2) (cos x/2)/(sin^5 x /2) "d"x`
Put `sin x/2` = t
⇒ `1/2 cos x/2 "d"x` = dt
⇒ `cos x/2 "d"x` = 2dt
Changing the limits, we have
When x = `pi/3`
`sin pi/6` = t
∴ t = `1/2`
When x = `pi/2`
`sin pi/4` = t
∴ t = `1/sqrt(2)`
∴ I = `1/4 xx 2 int_(1/2)^(1/sqrt(2)) "dt"/"t"^5`
= `1/2 xx (- 1/4) ["t"^-4]_(1/2)^(1/sqrt(2))`
= `- 1/8 [1/"t"^4]_(1/2)^(1/sqrt(2))`
= ` 1/8 [1/((1/sqrt(2))^4 - (1/(1/2))^4)]`
= `- 1/8 [4 - 16]`
= `- 1/8 xx (-12)`
= `3/2`
Hence, I = `3/2`.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
Evaluate the following integrals as limit of sums:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.