Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
उत्तर
Let I = `int sin^-1 sqrt(x/("a" + x)) "d"x`
Put x = a tan2θ
dx = 2a tan θ . sec2θ . dθ
∴ I = `int sin^-1 sqrt(("a" tan^2theta)/("a" + "a" tan^2 theta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sqrt("a") tan theta)/(sqrt("a") tan theta) * 2"a" tan theta * sec theta "d"theta`
= `int sin^-1 ((sintheta/costheta)/(1/costheta)) * 2"a" tan theta * sec^2theta "d"theta`
= `int sin^-1 (sin theta) * 2"a" tan theta * sec^2theta "d"theta`
= `2"a" int theta tan theta * sec^2theta "d"theta`
= `2"a"[theta int tan theta * sec^2 theta "d"theta - int ["D"(theta) * int tan theta * sec^2 theta "d"theta]]`
= `2"a" [theta * (tan^2theta)/2 - int (1*tan^2theta)/2 "d"theta]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 int (sec^2theta - 1)"d"theta]`
= `2"a"[theta* (tan^2theta)/2 - 1/2 (tantheta - theta)]`
= `2"a"[theta * (tan^2theta)/2 - 1/2 tan theta + 1/2 theta]`
= `2"a"[tan^-1 sqrt(x/"a") * x/(2"a") - 1/2 sqrt(x/"a") + 1/2 tan^-1 sqrt(x/"a")] + "C"`
= `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
Hence, I = `"a"[x/"a" tan^-1 sqrt(x/"a") - sqrt(x/"a") + tan^-1 sqrt(x/"a")] + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Find `int "dx"/(2sin^2x + 5cos^2x)`
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to