Advertisements
Advertisements
प्रश्न
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
उत्तर
Let x2 = t
2xdx = dt
`=> dx = dt/(2x)`
`I = int (2x)/((x^2 + 1)(x^4 + 4)) dx`
`= int (dt)/((t +1)(t^2 + 4))`
Let `1/((t + 1)(t^2 + 4)) = A/(t + 1) + (Bt + C)/(t^2+4)` .....(1)
`=> 1 = A(t^2 + 4) + (Bt + C) (t + 1)` ...(2)
Putting t=−1 in (2)
1 = A(1 + 4) +0
⇒5A = 1
`=> A = 1/5`
Putting t = 0 in 2
4A + C = 1
`=>C = 1 - 4/5`
`=> C = 1/5`
Putting t = 1 in (2)
1 = 5A + 2B + 2C
`=> -2B = 2/5`
`=>B = (-1)/5`
Putting the values of A, B and C in (1)
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate `int tan^8 x sec^4 x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
`int sinx/(3 + 4cos^2x) "d"x` = ______.