Advertisements
Advertisements
प्रश्न
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
उत्तर
Let x2 = t
2xdx = dt
`=> dx = dt/(2x)`
`I = int (2x)/((x^2 + 1)(x^4 + 4)) dx`
`= int (dt)/((t +1)(t^2 + 4))`
Let `1/((t + 1)(t^2 + 4)) = A/(t + 1) + (Bt + C)/(t^2+4)` .....(1)
`=> 1 = A(t^2 + 4) + (Bt + C) (t + 1)` ...(2)
Putting t=−1 in (2)
1 = A(1 + 4) +0
⇒5A = 1
`=> A = 1/5`
Putting t = 0 in 2
4A + C = 1
`=>C = 1 - 4/5`
`=> C = 1/5`
Putting t = 1 in (2)
1 = 5A + 2B + 2C
`=> -2B = 2/5`
`=>B = (-1)/5`
Putting the values of A, B and C in (1)
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
`cos x/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan3 2x sec 2x
Find the integrals of the function:
sin−1 (cos x)
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is