Advertisements
Advertisements
प्रश्न
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
उत्तर
According to question,
let I = `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
I = `int_ (sin "x" - cos "x")/sqrt(sin^2 "x" + cos^2 "x" + 2 sin "x" .cos "x") d"x"`
= `int_ ( sin "x" - cos "x")/sqrt((sin"x" + cos "x")^2 d"x"`
= `int_ (sin "x" - cos "x")/(sin "x" + cos "x") d"x"`
let sin x + cos x = t
⇒ (cos x - sin x) dx = dt
I = `int_ (-1)/("t") d"t"`
= -ln t + C
= ln `(1/"t") + "C"`
⇒ I = ln `((1)/(sin "x" + cos "x")) + "C"`
APPEARS IN
संबंधित प्रश्न
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos 2x cos 4x cos 6x
Find the integrals of the function:
sin3 (2x + 1)
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to