Advertisements
Advertisements
प्रश्न
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
उत्तर
Let I = `int_ sin("x" - a)/sin ("x" + a)d"x"`
⇒ I = `int_ sin [("x" + a) - 2a]/sin ("x" + a)d"x"`
= `int_ (sin ("x" + a )·cos (2a) - cos ("x" + a)· sin (2a))/sin ("x" + a)d"x"`
= `int_ cos (2a) d"x" - int_ cot ("x" + a)· sin (2a)d"x"`
= x·cos (2a) - log|sin (x + a)|·sin (2a) + C
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
sin4 x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^pi (x sin x)/(1 + cos^2 x) dx`
Evaluate `int_0^(3/2) |x sin pix|dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ (log "x")^2 d"x"`
Integrate the function `cos("x + a")/sin("x + b")` w.r.t. x.
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to