Advertisements
Advertisements
प्रश्न
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
उत्तर
Given: \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] I = \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] =`int_0^x x sin^2` xdx ...(1)
∵ \[\int_0^a f(x)dx = \int_0^a f(a - x)dx\]
From equation (1), we have:
I =
`int_0^x (π - x)sin ^2(π - x) dx`
I =
`int_0^πsin^2 (π - x)dx - int_0^x x sin (π - x) dx`
\[\Rightarrow\] c
[From equation (1)]
\[\Rightarrow\] 2I
`=int_0^x π sin^2 ` xdx
\[\Rightarrow\] ⇒I = \[\frac{\pi}{2} \int\limits_0^\pi \sin^2 xdx\] = \[\frac{\pi}{4} \int_0^\pi \left( 1 - \cos2x \right)dx = \frac{\pi}{4} \int_0^\pi dx - \frac{\pi}{4} \int_0^\pi \cos2xdx\]
\[\Rightarrow\] I
\[= \frac{\pi^2}{4} - \frac{\pi}{8} \left( \sin2x \right)_0^\pi = \frac{\pi^2}{4} - \frac{\pi}{8}\]`(sin 2π -0) = π^2/4.`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin 3x cos 4x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Find `int_ (sin "x" - cos "x" )/sqrt(1 + sin 2"x") d"x", 0 < "x" < π / 2 `
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`