Advertisements
Advertisements
Question
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Solution
Given: \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] I = \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] =`int_0^x x sin^2` xdx ...(1)
∵ \[\int_0^a f(x)dx = \int_0^a f(a - x)dx\]
From equation (1), we have:
I =
`int_0^x (π - x)sin ^2(π - x) dx`
I =
`int_0^πsin^2 (π - x)dx - int_0^x x sin (π - x) dx`
\[\Rightarrow\] c
[From equation (1)]
\[\Rightarrow\] 2I
`=int_0^x π sin^2 ` xdx
\[\Rightarrow\] ⇒I = \[\frac{\pi}{2} \int\limits_0^\pi \sin^2 xdx\] = \[\frac{\pi}{4} \int_0^\pi \left( 1 - \cos2x \right)dx = \frac{\pi}{4} \int_0^\pi dx - \frac{\pi}{4} \int_0^\pi \cos2xdx\]
\[\Rightarrow\] I
\[= \frac{\pi^2}{4} - \frac{\pi}{8} \left( \sin2x \right)_0^\pi = \frac{\pi^2}{4} - \frac{\pi}{8}\]`(sin 2π -0) = π^2/4.`
APPEARS IN
RELATED QUESTIONS
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
sin3 x cos3 x
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int dx/(x^2 + 4x + 8)`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
`int (sin^6x)/(cos^8x) "d"x` = ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`