Advertisements
Advertisements
Question
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Options
tanx + cotx + C
x + cotx)2 + C
tanx – cotx + C
(tanx – cotx)2 + C
Solution
`int "dx"/(sin^2x cos^2x)` is equal to tanx – cotx + C.
Explanation:
I = `int ("d"x)/(sin^2x cos^2x)`
= `int ((sin^2x + cos^2x)"d"x)/(sin^2xcos^2x)`
= `int sec^2 x"d"x + int "cosec"^2x "d"x`
= tanx – cotx + C
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Find the integrals of the function:
sin x sin 2x sin 3x
Find the integrals of the function:
sin 4x sin 8x
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
Find the integrals of the function:
sin−1 (cos x)
Find `int dx/(x^2 + 4x + 8)`
Evaluate `int_0^(3/2) |x sin pix|dx`
Find `int((3 sin x - 2) cos x)/(13 - cos^2 x- 7 sin x) dx`
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find `int_ sin ("x" - a)/(sin ("x" + a )) d"x"`
Find `int_ (log "x")^2 d"x"`
Find `int_ (sin2"x")/((sin^2 "x"+1)(sin^2"x"+3))d"x"`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to