Advertisements
Advertisements
Question
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
Options
`"e"^x cos x + "C"`
`"e"^x sin x + "C"`
`-"e"^x cos x + "C"`
`-"e"^x sin x + "C"`
Solution
`int "e"^x (cosx - sinx)"d"x` is equal to `"e"^x cos x + "C"`.
Explanation:
`int "e"^x ["f"(x) + "f"(x)]"d"x = "e"^x "f"(x) + "C"`.
Here f(x) = cosx, f'(x) = `- sin x`.
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_(pi/6)^(pi/3) dx/(1+sqrtcotx)`
Find the integrals of the function:
sin2 (2x + 5)
Find the integrals of the function:
`(1-cosx)/(1 + cos x)`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
`(sin^2 x)/(1 + cos x)`
Find the integrals of the function:
`(cos x - sinx)/(1+sin 2x)`
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`(cos 2x)/(cos x + sin x)^2`
Find the integrals of the function:
`1/(cos(x - a) cos(x - b))`
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find: `intsqrt(1 - sin 2x) dx, pi/4 < x < pi/2`
Find: `int sin^-1 (2x) dx.`
Find `int x^2tan^-1x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of the integral `int_(1/3)^1 (x - x^3)^(1/3)/x^4 dx` is
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to