Advertisements
Advertisements
Question
Find: `int sin^-1 (2x) dx.`
Solution
`int sin^-1 (2x) dx`
Using ILATE rule
`x sin^-1 2x - int (2x)/sqrt(1-4x^2)dx`
`x sin^-1 2x + 1/4 int (-8x)/sqrt(1-4x^2) dx`
Taking 1 - 4x2 = t
⇒ - 8x dx = dt
`x sin^-1 2x + 1/4 int dt/sqrt(t)`
`x sin^-1 2x + 1/4 (2t 1/2)/1 + "C"`
= `x sin^-1 2x + (t 1/2)/2 + "C"`
= `x sin^-1 2x + sqrt(1-4x^2)/2 + "C"`
APPEARS IN
RELATED QUESTIONS
Evaluate : `intsin(x-a)/sin(x+a)dx`
Find the integrals of the function:
cos4 2x
Find the integrals of the function:
tan4x
Find the integrals of the function:
`(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the function:
`1/(sin xcos^3 x)`
`int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx` is equal to ______.
`int (e^x(1 +x))/cos^2(e^x x) dx` equals ______.
Find `int (sin^2 x - cos^2x)/(sin x cos x) dx`
Find `int dx/(x^2 + 4x + 8)`
Find `int (2x)/((x^2 + 1)(x^4 + 4))`dx
Differentiate : \[\tan^{- 1} \left( \frac{1 + \cos x}{\sin x} \right)\] with respect to x .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x \cdot cosec x}dx\] .
Find the area of the triangle whose vertices are (-1, 1), (0, 5) and (3, 2), using integration.
Find: `int_ (cos"x")/((1 + sin "x") (2+ sin"x")) "dx"`
Find:
`int"dx"/sqrt(5-4"x" - 2"x"^2)`
Find: `int sec^2 x /sqrt(tan^2 x+4) dx.`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Find `int x^2tan^-1x"d"x`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
`int (cos^2x)/(sin x + cos x)^2 dx` is equal to