English

Form the Differential Equation Representing the Family of Curves Y = E2x (A + Bx), Where 'A' and 'B' Are Arbitrary Constants. - Mathematics

Advertisements
Advertisements

Question

Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.

Sum

Solution

Given: y = e2x (a + bx)

Differentiating the above equation, we get
`(dy)/(dx) = be^(2x) + 2 (a + bx)e^(2x)`

`= (dy)/(dx) = be^(2x) + 2y   ...("i")   [∵ y = e^(2x) (a + bx)]`

differentiating the above equation, we get

`(d^2y)/(dx^2) = 2 be^(2x) + 2(dy)/(dx)`

= `(d^2y)/(dx^2) = 2 ((dy)/(dx) - 2y) + 2(dy)/(dx)  ...[∵ "from" ("i") "we get", be^(2x) = (dy)/(dx) - 2y]`

= `(d^2y)/(dx^2) = 4(dy)/(dx)- 4y`

Hence, the required differential equation is `(d^2y)/(dx^2) - 4 (dy)/(dx) + 4y= 0`.

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (March) 65/1/3

RELATED QUESTIONS

Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Form the differential equation representing the family of curves `y2 = m(a2 - x2) by eliminating the arbitrary constants 'm' and 'a'. 


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


From the differential equation of the family of circles touching the y-axis at origin


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×