Advertisements
Advertisements
प्रश्न
Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.
उत्तर
Given: y = e2x (a + bx)
Differentiating the above equation, we get
`(dy)/(dx) = be^(2x) + 2 (a + bx)e^(2x)`
`= (dy)/(dx) = be^(2x) + 2y ...("i") [∵ y = e^(2x) (a + bx)]`
differentiating the above equation, we get
`(d^2y)/(dx^2) = 2 be^(2x) + 2(dy)/(dx)`
= `(d^2y)/(dx^2) = 2 ((dy)/(dx) - 2y) + 2(dy)/(dx) ...[∵ "from" ("i") "we get", be^(2x) = (dy)/(dx) - 2y]`
= `(d^2y)/(dx^2) = 4(dy)/(dx)- 4y`
Hence, the required differential equation is `(d^2y)/(dx^2) - 4 (dy)/(dx) + 4y= 0`.
संबंधित प्रश्न
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation corresponding to y = emx by eliminating m.
Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax
Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]
Find one-parameter families of solution curves of the following differential equation:-
\[e^{- y} \sec^2 y dy = dx + x dy\]
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the differential equation of system of concentric circles with centre (1, 2).
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
Family y = Ax + A3 of curves will correspond to a differential equation of order ______.
The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.
The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:
From the differential equation of the family of circles touching the y-axis at origin