मराठी

Find One-parameter Families of Solution Curves of the Following Differential Equation:- D Y D X + Y Cos X = E Sin X Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]

Solve the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]

बेरीज

उत्तर

We have, 
\[\frac{dy}{dx} + y \cos x = e^{\sin x } \cos x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
where
\[P = \cos x \]
\[Q = e^{\sin x }\cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cos x\ dx} \]
\[ = e^{\sin x } \]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }e^{\sin x } , \text{ we get }\]
\[ e^{\sin x } \left( \frac{dy}{dx} + y \cos x \right) = e^{\sin x } \times e^{\sin x } \cos x\]
\[ \Rightarrow e^{\sin x } \frac{dy}{dx} + y e^{\sin x } \cos x = e^{2\sin x} \cos x\]
Integrating both sides with respect to x, we get
\[ e^{\sin x } x y = \int e^{2\sin x} \cos x dx + C\]
\[ \Rightarrow e^{\sin x } y = I + C . . . . . \left( 2 \right)\]
Where, 
\[I = \int e^{2\sin x} \cos x\ dx\]
\[\text{Putting }t = \sin x,\text{ we get }\]
\[dt = \cos x dx\]
\[ \therefore I = \int e^{2t} dt\]
\[ = \frac{e^{2t}}{2}\]
\[ = \frac{e^{2\sin x}}{2}\]
\[\text{ Putting the value of I in }\left( 2 \right),\text{ we get }\]
\[ e^{\sin x }y = \frac{e^{2\sin x}}{2} + C\]
\[ \Rightarrow y = \frac{e^{\sin x }}{2} + C e^{- \sin x} \]
\[\text{ Hence, }y = \frac{e^{\sin x }}{2} + C e^{- \sin x}\text{ is the required solution.}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 36.07 | पृष्ठ १०७

संबंधित प्रश्‍न

Which of the following differential equation has y = x as one of its particular solution?

A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`

B. `(d^2y)/(dx^2) + x dy/dx + xy = x`

C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`

D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`

 

 

 


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Write the differential equation representing family of curves y = mx, where m is arbitrary constant.


Write the order of the differential equation representing the family of curves y = ax + a3.


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Find the equation of a curve passing through origin and satisfying the differential equation `(1 + x^2) "dy"/"dx" + 2xy` = 4x2 


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×