मराठी

Find the Equation of a Curve Passing Through the Point (0, 0) and Whose Differential Equation is D Y D X = E X Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]

बेरीज

उत्तर

We have to find the equation of the curve that passes through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]

\[\therefore dy = e^x \sin x\ dx\]

Integarting both sides, we get

\[\int dy = \int e^x \sin x\ dx\]

\[ \Rightarrow y = \int e^x \sin x\ dx ...............(1)\]

\[ \Rightarrow y = e^x \int \sin x\ dx - \int\left\{ \frac{d}{dx}\left( e^x \right) \int\sin x\ dx \right\} dx\]

\[ \Rightarrow y = - e^x \cos x + \int e^x \cos x\ dx\]

\[ \Rightarrow y = - e^x \cos x + \left[ e^x \int \cos x\ dx - \int\left\{ \frac{d}{dx}\left( e^x \right) \int\cos x\ dx \right\}dx \right]\]

\[ \Rightarrow y = - e^x \cos x + e^x \sin x - \int e^x \sin x\ dx\]

\[ \Rightarrow y = - e^x \cos x + e^x \sin x - y + C..............\left[\text{Using (1)}\right]\]

\[ \Rightarrow 2y = e^x \left( \sin x - \cos x \right) + C ...............(2)\]

The curve passes through the point (0, 0)

When, `x = 0; y = 0`

Substituting the value of `x` and `y` in (2), we get

\[0 = 1\left( 0 - 1 \right) + C\]

\[ \Rightarrow C = 1\]

\[\text{ Substituting the value of C in }\left( 2 \right),\text{ we get }\]

\[2y = e^x \left( \sin x - \cos x \right) + 1\]

Required equation of curve is `2y = e^x (sin x - cos x) + 1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.07 | Q 52 | पृष्ठ ५६

संबंधित प्रश्‍न

Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then find the rate of change of the slope of the curve when x = 3


Form the differential equation of the family of curves represented by y2 = (x − c)3.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - y = \cos 2x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Write the order of the differential equation representing the family of curves y = ax + a3.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


Find the differential equation of system of concentric circles with centre (1, 2).


The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The differential equation of the family of curves y2 = 4a(x + a) is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Find the equation of the curve at every point of which the tangent line has a slope of 2x:


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Form the differential equation of family of circles having centre on y-axis and raduis 3 units


Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×