मराठी

Form the Differential Equation Corresponding to (X − A)2 + (Y − B)2 = R2 by Eliminating a and B. - Mathematics

Advertisements
Advertisements

प्रश्न

Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.

बेरीज

उत्तर

The equation of the family of curves is \[\left( x - a \right)^2 + \left( y - b \right)^2 = r^2...............(1)\]

where \[a\text{ and }b\] are parameters.

This equation contains two parameters, so we shall get a second order differential equation.

Differentiating equation (1) with respect to x, we get

\[2\left( x - a \right) + 2\left( y - b \right)\frac{dy}{dx} = 0...............(2)\]

Differentiating (2) with respect to x, we get

\[2 + 2 \left( \frac{dy}{dx} \right)^2 + 2\left( y - b \right)\frac{d^2 y}{d x^2} = 0\]

\[ \Rightarrow 1 + \left( \frac{dy}{dx} \right)^2 + \left( y - b \right)\frac{d^2 y}{d x^2} = 0\]

\[ \Rightarrow \left( y - b \right) = - \frac{1 + \left( \frac{dy}{dx} \right)^2}{\frac{d^2 y}{d x^2}} .................(3)\]

From (2) and (3), we get

\[\left( x - a \right) - \frac{1 + \left( \frac{dy}{dx} \right)^2}{\frac{d^2 y}{d x^2}}\frac{dy}{dx} = 0\]

\[ \Rightarrow \left( x - a \right) = \frac{\frac{dy}{dx} + \left( \frac{dy}{dx} \right)^3}{\frac{d^2 y}{d x^2}} .................(4)\]

From (1), (3) and (4), we get 

\[\frac{\left[ \frac{dy}{dx} + \left( \frac{dy}{dx} \right)^3 \right]^2}{\left( \frac{d^2 y}{d x^2} \right)^2} + \frac{\left[ 1 + \left( \frac{dy}{dx} \right)^2 \right]^2}{\left( \frac{d^2 y}{d x^2} \right)^2} = r^2 \]
\[ \Rightarrow \frac{\left[ \left( \frac{dy}{dx} \right)^2 + 2 \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6 \right] + \left[ 1 + 2 \left( \frac{dy}{dx} \right)^2 + \left( \frac{dy}{dx} \right)^4 \right]}{\left( \frac{d^2 y}{d x^2} \right)^2} = r^2 \]
\[ \Rightarrow \left( \frac{dy}{dx} \right)^2 + 2 \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6 + 1 + 2 \left( \frac{dy}{dx} \right)^2 + \left( \frac{dy}{dx} \right)^4 = r^2 \left( \frac{d^2 y}{d x^2} \right)^2 \]
\[ \Rightarrow 1 + 3 \left( \frac{dy}{dx} \right)^2 + 3 \left( \frac{dy}{dx} \right)^4 + \left( \frac{dy}{dx} \right)^6 = r^2 \left( \frac{d^2 y}{d x^2} \right)^2 \]
\[ \Rightarrow \left[ 1 + \left( \frac{dy}{dx} \right)^2 \right]^3 = r^2 \left( \frac{d^2 y}{d x^2} \right)^2 \]
It is the required differential equation.




 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.02 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.02 | Q 8 | पृष्ठ १६

संबंधित प्रश्‍न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.


Which of the following differential equations has y = c1 ex + c2 e–x as the general solution?

(A) `(d^2y)/(dx^2) + y = 0`

(B) `(d^2y)/(dx^2) - y = 0`

(C) `(d^2y)/(dx^2) + 1 = 0`

(D) `(d^2y)/(dx^2)  - 1 = 0`

 

 


Form the differential equation representing the family of curves given by (x – a)2 + 2y2 = a2, where a is an arbitrary constant.


Form the differential equation corresponding to y = emx by eliminating m.


Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax


Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2


Form the differential equation of the family of curves represented by the equation (a being the parameter):
 (x − a)2 + 2y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

\[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\]

 


Show that y = bex + ce2x is a solution of the differential equation, \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


The differential equation which represents the family of curves y = eCx is


The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Find the area of the region bounded by the curves (x -1)2 + y2 = 1 and x2 + y2 = 1, using integration.


Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.


Find the differential equation of the family of curves y = Ae2x + B.e–2x.


Find the differential equation of system of concentric circles with centre (1, 2).


Find the equation of the curve through the point (1, 0) if the slope of the tangent to the curve at any point (x, y) is `(y - 1)/(x^2 + x)`


Family y = Ax + A3 of curves is represented by the differential equation of degree ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


The differential equation representing the family of circles x2 + (y – a)2 = a2 will be of order two.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×