मराठी

Find One-parameter Families of Solution Curves of the Following Differential Equation:- X Log X D Y D X + Y = 2 Log X - Mathematics

Advertisements
Advertisements

प्रश्न

Find one-parameter families of solution curves of the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]

Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = 2 \log x\]

बेरीज

उत्तर

We have, 
\[x \log x\frac{dy}{dx} + y = 2\log x\]
Dividing both sides by x \log x, we get
\[\frac{dy}{dx} + \frac{y}{x \log x} = 2\frac{\log x}{x \log x}\]
\[ \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \frac{1}{x \log x} \right)y = \frac{2}{x}\]
\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = \frac{1}{x \log x}\]
\[Q = \frac{2}{x}\]
Now,
\[I.F. = e^{\int P\ dx} = e^{\int\frac{1}{x \log x}dx} \]
\[ = e^{log\left| \log x \right|} \]
\[ = \log x\]
So, the solution is given by
\[y \times I . F . = \int Q \times I . F . dx + C\]
\[ \Rightarrow y \log x = 2\int\frac{1}{x} \times \log x dx + C\]
\[\text{Putting }\log x = t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[ \therefore y \log x = 2\int t\ dt + C\]
\[ \Rightarrow y \log x = \frac{2 t^2}{2} + C\]
\[ \Rightarrow y \log x = t^2 + C\]
\[ \Rightarrow y \log x = \left( \log x \right)^2 + C .............\left( \because \log x = t \right)\]
\[ \Rightarrow y = \log x + \frac{C}{\log x}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Exercise 22.10 | Q 36.11 | पृष्ठ १०७

संबंधित प्रश्‍न

Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.


Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

 

Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by  x2 - y2 = cx


Form the differential equation from the following primitive where constants are arbitrary:
xy = a2


Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c


Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.


Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.


Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

 


Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


For the differential equation xy \[\frac{dy}{dx}\] = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{mx}\], m is a given real number.


Find one-parameter families of solution curves of the following differential equation:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x\]


Find one-parameter families of solution curves of the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find one-parameter families of solution curves of the following differential equation:-

\[\frac{dy}{dx} \cos^2 x = \tan x - y\]


Find one-parameter families of solution curves of the following differential equation:-

\[e^{- y} \sec^2 y dy = dx + x dy\]


Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.


Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.


Form the differential equation representing the family of curves y = e2x (a + bx), where 'a' and 'b' are arbitrary constants.


Find the equation of a curve whose tangent at any point on it, different from origin, has slope `y + y/x`.


The solution of the differential equation `2x * "dy"/"dx" y` = 3 represents a family of ______.


The differential equation representing the family of curves y = A sinx + B cosx is ______.


Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.


Form the differential equation by eliminating A and B in Ax2 + By2 = 1


Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.


Find the equation of a curve passing through the point (1, 1). If the tangent drawn at any point P(x, y) on the curve meets the co-ordinate axes at A and B such that P is the mid-point of AB.


The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.


Family y = Ax + A3 of curves will correspond to a differential equation of order ______.


The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.


Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0


The area above the x-axis and under the curve `y = sqrt(1/x - 1)` for `1/2 ≤ x ≤ 1` is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×