Advertisements
Advertisements
प्रश्न
Differential equation representing the family of curves y = ex (Acosx + Bsinx) is `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Given equation is y = ex (Acosx + Bsinx)
Differentiating both sides, we get
`("d"y)/("d"x)` = ex (–A sin x + B cos x) + (A cos x + B sin x) ex
`("d"y)/("d"x)` = ex (–A sin x + B cos x) + y
Again differentiating w.r.t. x, we get
`("d"^2y)/("d"x^2) = "e"^x (-"A" cosx - "B" sinx) + (-"A" sinx + "B"cosx) . "e"^x + ("d"y)/("d"x)`
`("d"^2y)/("d"x^2) = "e"^x ("A" cos x + "B" sin x) + ("d"y)/("d"x) - y + ("d"y)/("d"x)`
`("d"^2y)/("d"x^2) = - y + y + 2("d"y)/("d"x)`
∴ `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + 2y` = 0
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles touching the y-axis at the origin.
Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Which of the following differential equation has y = x as one of its particular solution?
A. `(d^2y)/(dx^2) - x^2 (dy)/(dx) + xy = x`
B. `(d^2y)/(dx^2) + x dy/dx + xy = x`
C. `(d^2y)/(dx^2) - x^2 dy/dx + xy = 0`
D. `(d^2y)/(dx^2) + x dy/dx + xy = 0`
Form the differential equation of the family of circles in the first quadrant which touch the coordinate axes.
Show that the family of curves for which `dy/dx = (x^2+y^2)/(2x^2)` is given by x2 - y2 = cx
Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1
Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1
Find one-parameter families of solution curves of the following differential equation:-
\[\left( x \log x \right)\frac{dy}{dx} + y = \log x\]
Find one-parameter families of solution curves of the following differential equation:-
\[\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2\]
Find one-parameter families of solution curves of the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Write the differential equation representing family of curves y = mx, where m is arbitrary constant.
Write the order of the differential equation representing the family of curves y = ax + a3.
The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by
Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.
Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.
Form the differential equation representing the family of curves y = A sin x, by eliminating the arbitrary constant A.
Find the differential equation of the family of curves y = Ae2x + B.e–2x.
Find the equation of a curve passing through the point (1, 1) if the perpendicular distance of the origin from the normal at any point P(x, y) of the curve is equal to the distance of P from the x-axis.
Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Form the differential equation by eliminating A and B in Ax2 + By2 = 1
Find the equation of a curve passing through (2, 1) if the slope of the tangent to the curve at any point (x, y) is `(x^2 + y^2)/(2xy)`.
Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abcissa and ordinate of the point.
The differential equation `y ("d"y)/("d"x) + "c"` represents: ______.
The differential equation of the family of curves x2 + y2 – 2ay = 0, where a is arbitrary constant, is ______.
The curve for which the slope of the tangent at any point is equal to the ratio of the abcissa to the ordinate of the point is ______.
Form the differential equation of the family of hyperbola having foci on x-axis and centre at origin.