मराठी

The solution of dddydx=(yx)13 is y23-x23 = c. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

The given differential equation is `("d"y)/("d"x) = (y/x)^(1/3)`

⇒ `("d"y)/("d"x) = y^(1/3)/x^(1/3)`

⇒ `("d"y)/y^(1/3) = ("d"x)/x^(1/3)`

Integrating both sides, we get

`int ("d"y)/y^(1/3) = int ("d"x)/x^(1/3)`

⇒ `int y^(-1/3) "d"y = int x^(-1/3) "d"x`

⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3) "d"x`

⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3 + 1) + "c"`

⇒ `3/2 y^(2/3) = 3/2 x^(2/3) + "c"`

⇒ `y^(2/3) = x^(2/3) + 2/3 "c"`

⇒ `y^(2/3) - x^(2/3) = "k"["k" = 2/3 "c"]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 77.(vii) | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} - y \cot x = cosec\ x\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×