Advertisements
Advertisements
प्रश्न
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
The given differential equation is `("d"y)/("d"x) = (y/x)^(1/3)`
⇒ `("d"y)/("d"x) = y^(1/3)/x^(1/3)`
⇒ `("d"y)/y^(1/3) = ("d"x)/x^(1/3)`
Integrating both sides, we get
`int ("d"y)/y^(1/3) = int ("d"x)/x^(1/3)`
⇒ `int y^(-1/3) "d"y = int x^(-1/3) "d"x`
⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3) "d"x`
⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3 + 1) + "c"`
⇒ `3/2 y^(2/3) = 3/2 x^(2/3) + "c"`
⇒ `y^(2/3) = x^(2/3) + 2/3 "c"`
⇒ `y^(2/3) - x^(2/3) = "k"["k" = 2/3 "c"]`
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.