मराठी

D Y D X − Y Cot X = C O S E C X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{dy}{dx} - y \cot x = cosec\ x\]

बेरीज

उत्तर

We have,

\[\frac{dy}{dx} - y \cot x = cosec\ x\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = - \cot x \]

\[Q = cosec\ x\]

Now,

\[I . F . = e^{\int - \cot x\ dx} \]

\[ = e^{- \log \left| \left( \sin x \right) \right|} \]

\[ = e^{\log \left| \left(cosec\ x \right) \right|} \]

\[ = cosec x\]

So, the solution is given by

\[y\ cosec\ x = \int cosec\ x \times cosec\ x\ dx + C\]

\[ \Rightarrow y\ cosec\ x = \int {cosec}^2 x dx + C\]

\[ \Rightarrow y\ cosec\ x = - \cot x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 40 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


If y = etan x+ (log x)tan x then find dy/dx


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Which of the following differential equations has y = x as one of its particular solution?


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Solution of differential equation xdy – ydx = 0 represents : ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×