मराठी

Find the particular solution of the following differential equation, given that y = 0 when x = π4. dydx+ycotx=21+sinx - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`

बेरीज

उत्तर

The differential equation is a linear differential equation

IF = `e^(int cotxdx) = e^(logsinx) = sinx`

The general solution is given by

`ysinx = int 2 sinx/(1 + sinx) dx`

⇒ `ysinx = 2 int (sinx + 1 - 1)/(1 + sinx) dx = 2 int [1 - 1/(1 + sinx)] dx`

⇒ `ysinx = 2 int [1 - 1/(1 + cos(pi/2 - x))] dx`

⇒ `ysinx = 2 int [1 - 1/(2cos^2 (pi/4 - x/2))] dx`

⇒ `ysinx = 2 int [1 - 1/2 sec^2 (pi/4 - x/2)] dx`

⇒ `ysinx = 2[x + tan(pi/4 - x/2)] + c`

Given that y = 0, when x = `pi/4`,

Hence, 0 = `2[pi/4 + tan  pi/8] + c`

⇒ `c = - pi/2 - 2 tan  pi/8`

Hence, the particular solution is `y = "cosec"x [2{x + tan  (pi/4 - x/2)} - (pi/2 + 2tan  pi/8)]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Term 2 Sample

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} + 1 = e^{x + y}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×