Advertisements
Advertisements
प्रश्न
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
उत्तर
The differential equation is a linear differential equation
IF = `e^(int cotxdx) = e^(logsinx) = sinx`
The general solution is given by
`ysinx = int 2 sinx/(1 + sinx) dx`
⇒ `ysinx = 2 int (sinx + 1 - 1)/(1 + sinx) dx = 2 int [1 - 1/(1 + sinx)] dx`
⇒ `ysinx = 2 int [1 - 1/(1 + cos(pi/2 - x))] dx`
⇒ `ysinx = 2 int [1 - 1/(2cos^2 (pi/4 - x/2))] dx`
⇒ `ysinx = 2 int [1 - 1/2 sec^2 (pi/4 - x/2)] dx`
⇒ `ysinx = 2[x + tan(pi/4 - x/2)] + c`
Given that y = 0, when x = `pi/4`,
Hence, 0 = `2[pi/4 + tan pi/8] + c`
⇒ `c = - pi/2 - 2 tan pi/8`
Hence, the particular solution is `y = "cosec"x [2{x + tan (pi/4 - x/2)} - (pi/2 + 2tan pi/8)]`
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `"dy"/"dx" + "a"y` = emx
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.