Advertisements
Advertisements
प्रश्न
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
उत्तर
We have y = ex + 1 ...(1)
Differentiating (1) w.r.t.x, we get
`y' = d/dx (e^x + 1) = e^x`
and `y” = d/dx (e^x) = e^x`
⇒ y” - y’ = 0
Thus, y = ex + 1 is a solution to the stated differentiating (1) equation.
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
Which of the following differential equations has y = x as one of its particular solution?
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(x2 + 1) dy + (2y − 1) dx = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.