Advertisements
Advertisements
प्रश्न
Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
उत्तर
We have,
\[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \cos\left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)} . . . . . \left( 1 \right)\]
Clearly this is a homogeneous equation,
Putting y = vx
\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ in (1) we get}\]
\[\frac{dy}{dx} = \frac{y \cos\left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{vx \cos \left( v \right) + x}{x \cos \left( v \right)}\]
\[ \Rightarrow v + x\frac{dv}{dx} = \frac{v \cos \left( v \right) + 1}{\cos \left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos \left( v \right) + 1}{\cos \left( v \right)} - v\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos \left( v \right) + 1 - v \cos \left( v \right)}{\cos \left( v \right)}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{\cos \left( v \right)}\]
\[ \Rightarrow \cos \left( v \right) dv = \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\cos \left( v \right) dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sin \left( v \right) = \log \left| x \right| + \log \left| C \right|\]
\[ \Rightarrow \sin \left( \frac{y}{x} \right) = \log \left| Cx \right|\]
APPEARS IN
संबंधित प्रश्न
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
If y = P eax + Q ebx, show that
`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
x (e2y − 1) dy + (x2 − 1) ey dx = 0
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Which of the following differential equations has `y = x` as one of its particular solution?