Advertisements
Advertisements
प्रश्न
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
पर्याय
y = tan–1x
y – x = k(1 + xy)
x = tan–1y
tan(xy) = k
उत्तर
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is y – x = k(1 + xy).
Explanation:
The given differential equation is `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)`
⇒ `("d"y)/(1 + y^2) = ("d"x)/(1 + x^2)`
Integrating both sides, we get
`int ("d"y)/(1 + y^2) = int ("d"x)/(1 + x^2)`
⇒ tan–1y = tan–1x + c
⇒ tan–1y – tan–1x = c
⇒ `tan^-1((y - x)/(1 + xy))` = c
⇒ `(y - x)/(1 + xy)` = tan c
⇒ `((y - x)/(1 + xy))` = k ....[k = tan c]
⇒ y – x = k(1 + xy)
APPEARS IN
संबंधित प्रश्न
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
x (e2y − 1) dy + (x2 − 1) ey dx = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.