मराठी

The solution of the differential equation dddydx+1+y21+x2 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.

पर्याय

  • y = tan–1x

  • y – x = k(1 + xy)

  • x = tan–1y

  • tan(xy) = k

MCQ
रिकाम्या जागा भरा

उत्तर

The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is y – x = k(1 + xy).

Explanation:

The given differential equation is `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)`

⇒ `("d"y)/(1 + y^2) = ("d"x)/(1 + x^2)`

Integrating both sides, we get

`int ("d"y)/(1 + y^2) = int ("d"x)/(1 + x^2)`

⇒ tan–1y = tan–1x + c

⇒ tan–1y – tan–1x = c

⇒ `tan^-1((y - x)/(1 + xy))` = c

⇒ `(y - x)/(1 + xy)` = tan c

⇒ `((y - x)/(1 + xy))` = k  ....[k = tan c]

⇒ y – x = k(1 + xy)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 54 | पृष्ठ १९८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

x (e2y − 1) dy + (x2 − 1) ey dx = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


y = aemx+ be–mx satisfies which of the following differential equation?


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


Which of the following differential equations has `y = x` as one of its particular solution?


The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×