मराठी

Solve the Following Differential Equation:- (1 + X2) Dy + 2xy Dx = Cot X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx

बेरीज

उत्तर

We have,

\[\left( 1 + x^2 \right)dy + 2xy dx = \cot x dx\]

\[ \Rightarrow \frac{dy}{dx} + \frac{2x}{\left( 1 + x^2 \right)}y = \frac{\cot x}{\left( 1 + x^2 \right)}\]

\[\text{Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get}\]

\[P = \frac{2x}{\left( 1 + x^2 \right)}\]

\[Q = \frac{\cot x}{\left( 1 + x^2 \right)}\]

Now,

\[I.F. = e^{\int\frac{2x}{\left( 1 + x^2 \right)}dx} \]

\[ = e^{\log\left| 1 + x^2 \right|}\]

\[ = 1 + x^2 \]

So, the solution is given by

\[y \times I . F . = \int Q \times I . F . dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \int\left[ \frac{\cot x}{\left( 1 + x^2 \right)} \times \left( 1 + x^2 \right) \right] dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \int\cot x dx + C\]

\[ \Rightarrow y\left( 1 + x^2 \right) = \log \left| \sin x \right| + C\]

\[ \Rightarrow y = \left( 1 + x^2 \right)^{- 1} \log \sin x + C \left( 1 + x^2 \right)^{- 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 66.12 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


(x + y − 1) dy = (x + y) dx


(x2 + 1) dy + (2y − 1) dx = 0


x2 dy + (x2 − xy + y2) dx = 0


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]


Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solution of differential equation xdy – ydx = 0 represents : ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×