मराठी

The integrating factor of the differential equation dddydx+y=1+yx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.

पर्याय

  • `x/"e"^x`

  • `"e"^x/x`

  • xex 

  • ex 

MCQ
रिकाम्या जागा भरा

उत्तर

The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is `"e"^x/x`.

Explanation:

The given differential equation is `("d"y)/("d"x) + y = (1 + y)/x` 

⇒ `("d"y)/("d"x) = (1 + y)/x - y`

⇒ `("d"y)/("d"x) = 1/x + y((1 - x))/x`

⇒ `("d"y)/("d"x) - ((1 - x)/x)y = 1/x`

Here, P = `-((1 - x)/x)` and Q = `1/x`

∴ Integrating factor I.F = `"e"^(intPdx)`

= `"e"^(int (x - 1)/x "d"x)`

= `"e"^(int(1 - 1/x)"d"x)`

= `"e"^((x - logx))`

= `"e"^x . "e"^(-logx)`

= `"e"^x . "e"^(log  1/x)`

= `"e"^x . 1/x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 55 | पृष्ठ १९८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of differential equation coty dx = xdy is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×