Advertisements
Advertisements
प्रश्न
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
पर्याय
`x/"e"^x`
`"e"^x/x`
xex
ex
उत्तर
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is `"e"^x/x`.
Explanation:
The given differential equation is `("d"y)/("d"x) + y = (1 + y)/x`
⇒ `("d"y)/("d"x) = (1 + y)/x - y`
⇒ `("d"y)/("d"x) = 1/x + y((1 - x))/x`
⇒ `("d"y)/("d"x) - ((1 - x)/x)y = 1/x`
Here, P = `-((1 - x)/x)` and Q = `1/x`
∴ Integrating factor I.F = `"e"^(intPdx)`
= `"e"^(int (x - 1)/x "d"x)`
= `"e"^(int(1 - 1/x)"d"x)`
= `"e"^((x - logx))`
= `"e"^x . "e"^(-logx)`
= `"e"^x . "e"^(log 1/x)`
= `"e"^x . 1/x`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of differential equation coty dx = xdy is ______.