Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
उत्तर
Given equation is `(1 + y^2) + (x - "e"^(tan^(-1) y)) "dy"/"dx"` = 0
⇒ `(x - "e"^(tan^-1y)) "dy"/"dx" = -(1 + y^2)`
⇒ `"dy"/"dx" = (-(1 + y^2))/(x - "e"^(tan^-1 y))`
⇒ `"dx"/"dy" = (x - "e"^(tan^-1y))/(-(1 + y^2))`
⇒ `"dx"/"dy" = - x/((1 + y^2)) + ("e"^(tan^-1y))/(1 + y^2)`
⇒ `"dx"/"dy" + x/((1 + y^2)) = ("e"^(tan^-1 y))/(1 + y^2)`
Here, P = `1/(1 + y^2)` and Q = `("e"^(tan^-1 y))/(1 + y^2)`
∴ Integrating factor I.F. = `"e"^(int Pdy)`
= `"e"^(int 1/(1 + y^2) "d"y)`
= `"e"^(tan^-1 y)`
∴ Solution is `x . "I"."F". = int "Q". "I"."F". "d"y + "c"`
⇒ `x . "e"^(tan^-1 y) = int ("e"^(tan^-1 y))/(1 + y^2) * "e"^(tan^-1 y) "dy" + "c"`
Put `"e"^(tan^-1 y)` = t
∴ `"e"^(tan^-1 y) * 1/(1 + y^2) "dy"` = dt
∴ `x . "e"^(tan^-1 y) = int "t" . "dt" + "c"`
⇒ `x . "e"^(tan^-1 y) = 1/2 "t"^2 + "c"`
⇒ `x . "e"^(tan^-1 y) = 1/2 ("e"^(tan^-1 y))^2 + "c"`
⇒ x = `1/2 ("e"^(tan^-1 y)) + "c"/("e"^(tan^-1 y))`
⇒ 2x = `"e"^(tan^-1 y) + (2"c")/("e"^(tan^-1 y)`
⇒ `2x . "e"^(tan^-1 y) = ("e"^(tan^-1y))^2 + 2"c"`
Hence, this is the required general solution.
APPEARS IN
संबंधित प्रश्न
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
cos (x + y) dy = dx
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
(x + y − 1) dy = (x + y) dx
(x2 + 1) dy + (2y − 1) dx = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\frac{dy}{dx} + 5y = \cos 4x\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.