मराठी

Find the general solution of the differential equation edydx(1+y2)+(x-etan-1y)dydx = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.

बेरीज

उत्तर

Given equation is `(1 + y^2) + (x - "e"^(tan^(-1) y)) "dy"/"dx"` = 0

⇒ `(x - "e"^(tan^-1y)) "dy"/"dx" = -(1 + y^2)`

⇒ `"dy"/"dx" = (-(1 + y^2))/(x - "e"^(tan^-1 y))`

⇒ `"dx"/"dy" = (x - "e"^(tan^-1y))/(-(1 + y^2))`

⇒ `"dx"/"dy" = - x/((1 + y^2)) + ("e"^(tan^-1y))/(1 + y^2)` 

⇒ `"dx"/"dy" + x/((1 + y^2)) = ("e"^(tan^-1 y))/(1 + y^2)`

Here, P = `1/(1 + y^2)` and Q = `("e"^(tan^-1 y))/(1 + y^2)`

∴ Integrating factor I.F. = `"e"^(int Pdy)`

= `"e"^(int 1/(1 + y^2) "d"y)`

= `"e"^(tan^-1 y)`

∴ Solution is `x . "I"."F". = int "Q". "I"."F".  "d"y + "c"`

⇒ `x . "e"^(tan^-1 y) = int ("e"^(tan^-1 y))/(1 + y^2) * "e"^(tan^-1 y) "dy" + "c"`

Put `"e"^(tan^-1 y)` = t

∴ `"e"^(tan^-1 y) * 1/(1 + y^2) "dy"` = dt

∴ `x . "e"^(tan^-1 y) = int "t" . "dt" + "c"`

⇒ `x . "e"^(tan^-1 y) = 1/2 "t"^2 + "c"`

⇒ `x . "e"^(tan^-1 y) = 1/2 ("e"^(tan^-1 y))^2 + "c"`

⇒ x = `1/2 ("e"^(tan^-1 y)) + "c"/("e"^(tan^-1 y))`

⇒ 2x = `"e"^(tan^-1 y) + (2"c")/("e"^(tan^-1 y)`

⇒ `2x . "e"^(tan^-1 y) = ("e"^(tan^-1y))^2 + 2"c"`

Hence, this is the required general solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ १९४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 17 | पृष्ठ १९४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = cos x + C : y′ + sin x = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


cos (x + y) dy = dx


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(x + y − 1) dy = (x + y) dx


(x2 + 1) dy + (2y − 1) dx = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×