मराठी

For the Following Differential Equation, Find the General Solution:- Y Log Y D X − X D Y = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation, find the general solution:- `y log y dx − x dy = 0`

बेरीज

उत्तर

We have,

\[y \log y\ dx - x\ dy = 0\]

\[ \Rightarrow y \log y dx = x dy\]

\[ \Rightarrow \frac{1}{x}dx = \frac{1}{y \log y}dy\]

\[ \Rightarrow \frac{1}{y \log y}dy = \frac{1}{x}dx\]

Integrating both sides, we get

\[\int\frac{1}{y \log y}dy = \int\frac{1}{x}dx . . . . . \left( 1 \right)\]

Putting log y = t

\[ \Rightarrow \frac{1}{y}dy = dt\]

Therefore (1) becomes

\[\int\frac{1}{t}dt = \int\frac{1}{x}dx\]

\[ \Rightarrow \log \left( t \right) = \log x + \log C\]

\[ \Rightarrow \log \left( \log y \right) = \log x + \log C\]

\[ \Rightarrow \log \left( \log y \right) = \log Cx\]

\[ \Rightarrow \log y = Cx\]

\[ \Rightarrow y = e^{Cx}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 64.4 | पृष्ठ १४६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The number of arbitrary constants in the general solution of differential equation of fourth order is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(x2 + 1) dy + (2y − 1) dx = 0


x2 dy + (x2 − xy + y2) dx = 0


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×