Advertisements
Advertisements
प्रश्न
x2 dy + (x2 − xy + y2) dx = 0
उत्तर
We have,
\[ x^2 dy + \left( x^2 - xy + y^2 \right)dy = 0\]
\[ \Rightarrow x^2 dy = \left( xy - x^2 - y^2 \right)dy\]
\[ \Rightarrow \frac{dy}{dx} = \frac{xy - x^2 - y^2}{x^2}\]
This is a homogeneous differential equation.
\[\text{Putting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx},\text{ we get}\]
\[v + x\frac{dv}{dx} = \frac{x^2 v - x^2 - x^2 v^2}{x^2}\]
\[ \Rightarrow v + x\frac{dv}{dx} = v - 1 - v^2 \]
\[ \Rightarrow x\frac{dv}{dx} = - 1 - v^2 \]
\[ \Rightarrow \frac{dv}{1 + v^2} = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{dv}{1 + v^2}dv = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v = - \log \left| x \right| + \log C\]
\[ \Rightarrow \tan^{- 1} \frac{y}{x} = \log\frac{C}{x}\]
\[ \Rightarrow e^{\tan^{- 1} \frac{y}{x}} = \frac{C}{x}\]
\[ \Rightarrow C = x e^{\tan^{- 1} \frac{y}{x}}\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \left( x + y \right)^2\]
(x + y − 1) dy = (x + y) dx
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.