मराठी

The solution of the differential equation dddydx=x+2yx is x + y = kx2. - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is True.

Explanation:

The given differential equation is `("d"y)/("d"x) = (x + 2y)/x`

⇒ `("d"y)/("d"x) = 1 + 2 y/x`

⇒ `("d"y)/("d"x) = (2y)/x` = 1

Here, P = `(-2)/x` and Q = 1

Integrating factor I.F. = `"e"^(int(-2)/x "d"x)`

= `"e"^(-2 log x)`

= `"e"^(log x^-2)`

= `1/x^2`

∴ Solution is `y xx "I"."F". = int "Q" xx "I"."F". "d"x + "c"`

⇒ `y xx 1/x^2 = int 1 xx 1/x^2 "d"x + "c"`

⇒ `y/x^2 = int 1/x^2 "d"x + "c"`

⇒ `y/x^2 = - 1/x + "c"`

⇒ y = `-x + "c"x^2`

⇒ y + x = cx2 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise | Q 77.(ix) | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The number of arbitrary constants in the general solution of differential equation of fourth order is


\[\frac{dy}{dx} = \left( x + y \right)^2\]


cos (x + y) dy = dx


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} + 2y = \sin 3x\]


\[\frac{dy}{dx} + y = 4x\]


\[\frac{dy}{dx} + 5y = \cos 4x\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×