Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
उत्तर
The given differential equation is
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)`
`=> (dy)/(dx) = 2x + x^2 cotx - y cotx`
`=> dy/dx + (cot x)y = 2x + x^2 cot x`
This is a linear differential equation.
Here, P = cot x, Q = 2x + x2 cot x
:. I.F. = `e^(int P dx) = e^(int cot s dx) = e^(log|sin x|) = sin x`
The general solution of this linear differential equation is given by
y(I.F.) = ∫Q(I.F.)dx + C
`=> y*sinx = int(2x + x^2 cotx) sinx dx + C`
`=>y*sinx = int 2xsin x dx + int x^2 cos x dx + C`
`y*sinx = int2x sin x dx + x^2 sinx - int 2 xsin x + C` (Applying integration by parts in the 2nd integral)
`=>y*sinx = x^2 sinx +C`......1
When y = 0, `x = pi/2` (Given)
`:. 0 xx sin pi/2 = pi^2/4 sin pi/4 + C`
`=> C = - pi^2/4`
Substituting the value of C in (1), we get
`ysinx = x^2 sin x - pi^2/4`
`=> (x^2- y) sin x = pi^2/4`
This is the particular solution of the given differential equation
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C : y′ + sin x = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
If y = etan x+ (log x)tan x then find dy/dx
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
x (e2y − 1) dy + (x2 − 1) ey dx = 0
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.
The solution of differential equation coty dx = xdy is ______.
Which of the following differential equations has `y = x` as one of its particular solution?
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.