Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
पर्याय
(x + y) ex + y = 0
(x + C) ex + y = 0
(x − C) ex + y = 1
(x − C) ex + y + 1 =0
उत्तर
(x − C) ex + y + 1 = 0
We have,
\[\frac{dy}{dx} + 1 = e^{x + y} \]
\[\text{ Let }x + y = v\]
\[ \Rightarrow 1 + \frac{dy}{dx} = \frac{dv}{dx}\]
\[ \Rightarrow \frac{dy}{dx} + 1 = \frac{dv}{dx}\]
\[ \therefore \frac{dv}{dx} = e^v \]
\[ \Rightarrow e^{- v} dv = dx\]
Integrating both sides, we get
\[ - e^{- v} = x - C\]
\[ \Rightarrow - 1 = e^v \left( x - C \right)\]
\[ \Rightarrow \left( x - C \right) e^{x + y} + 1 = 0\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
(x2 + 1) dy + (2y − 1) dx = 0
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The number of arbitrary constants in a particular solution of the differential equation tan x dx + tan y dy = 0 is ______.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
tan–1x + tan–1y = c is the general solution of the differential equation ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of the differential equation `("d"y)/("d"x) = "e"^(x^2/2) + xy` is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.