मराठी

Solve the Following Differential Equation:- ( X − Y ) D Y D X = X + 2 Y - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

बेरीज

उत्तर

We have,

\[\left( x - y \right)\frac{dy}{dx} = x + 2y\]

\[ \Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y} . . . . . \left( 1 \right)\]

Clearly this is a homogeneous equation,

Putting y = vx

\[ \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}\]

\[\text{Substituting }y = vx\text{ and }\frac{dy}{dx} = v + x\frac{dv}{dx}\text{ (1) becomes,} \]

\[v + x\frac{dv}{dx} = \frac{x + 2vx}{x - vx}\]

\[ \Rightarrow v + x\frac{dv}{dx} = \frac{1 + 2v}{1 - v}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{1 + 2v - v + v^2}{1 - v}\]

\[ \Rightarrow x\frac{dv}{dx} = \frac{v^2 + v + 1}{1 - v}\]

\[ \Rightarrow \frac{1 - v}{v^2 + v + 1}dv = \frac{1}{x}dx\]

\[ \Rightarrow \left[ \frac{- v}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]

\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1 - 1}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]

\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{1}{2} \times \frac{1}{v^2 + v + 1} + \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]

\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{v^2 + v + 1} \right]dv = \frac{1}{x}dx\]

\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{v^2 + v + \frac{1}{4} + \frac{3}{4}} \right]dv = \frac{1}{x}dx\]

\[ \Rightarrow \left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right]dv = \frac{1}{x}dx\]

Integrating both sides, we get

\[ \Rightarrow \int\left[ - \frac{1}{2} \times \frac{2v + 1}{v^2 + v + 1} + \frac{3}{2} \times \frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right]dv = \int\frac{1}{x}dx\]

\[ \Rightarrow - \frac{1}{2}\int\frac{2v + 1}{v^2 + v + 1}dv + \frac{3}{2}\int\frac{1}{\left( v + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2}dv = \int\frac{1}{x}dx\]

\[ \Rightarrow - \frac{1}{2}\log \left| v^2 + v + 1 \right| + \frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \frac{v + \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \log \left| x \right| + C\]

\[ \Rightarrow - \frac{1}{2}\log \left| \left( \frac{y}{x} \right)^2 + \frac{y}{x} + 1 \right| + \frac{3}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan^{- 1} \frac{\frac{y}{x} + \frac{1}{2}}{\frac{\sqrt{3}}{2}} = \log \left| x \right| + C\]

\[ \Rightarrow - \frac{1}{2}\log \left| \frac{y^2 + xy + x^2}{x^2} \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]

\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \frac{1}{2}\log \left| x^2 \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]

\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \log \left| x \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = \log \left| x \right| + C\]

\[ \Rightarrow - \frac{1}{2}\log \left| y^2 + xy + x^2 \right| + \sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = C\]

\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| - 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) = - 2C\]

\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| = 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) - 2C\]

\[ \Rightarrow \log \left| y^2 + xy + x^2 \right| = 2\sqrt{3} \tan^{- 1} \left( \frac{2y + x}{\sqrt{3}x} \right) + k\text{ Where, }k = - 2C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 22: Differential Equations - Revision Exercise [पृष्ठ १४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 22 Differential Equations
Revision Exercise | Q 66.01 | पृष्ठ १४७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


If   `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0

Also, find the particular solution when x = 0 and y = π.


If y = P eax + Q ebx, show that

`(d^y)/(dx^2)=(a+b)dy/dx+aby=0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


(1 + y + x2 y) dx + (x + x3) dy = 0


(x2 + 1) dy + (2y − 1) dx = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[\frac{dy}{dx} + y = 4x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 2y = \sin x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + 3y = e^{- 2x}\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×