Advertisements
Advertisements
प्रश्न
The differential equation for which y = acosx + bsinx is a solution, is ______.
पर्याय
`("d"^2y)/("d"x^2) + y` = 0
`("d"^2y)/("d"x^2) - y` = 0
`("d"^2y)/("d"x^2) + ("a" + "b")y` = 0
`("d"^2y)/("d"x^2) + ("a" - "b")y` = 0
उत्तर
The differential equation for which y = acosx + bsinx is a solution, is `("d"^2y)/("d"x^2) - y` = 0.
Explanation:
The given equation is y = acosx + bsinx
`("d"y)/("d"x)` = – asinx + bcosx
`("d"^2y)/("d"x^2)` = – acosx – bsinx
⇒ `("d"^2y)/("d"x^2)` = – (acosx + bsinx)
⇒ `("d"^2y)/("d"x^2)` = –y
⇒ `("d"y)/("d"x) + y` = 0
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
General solution of `("d"y)/("d"x) + y` = sinx is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Which of the following differential equations has `y = x` as one of its particular solution?
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.