Advertisements
Advertisements
प्रश्न
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
पर्याय
`"e"^(x^2 - y)` = c
`"e"^-y + "e"^(x^2)` = c
`"e"^-y = "e"^(x^2)` + c
`"e"^(x^2 + y)` = c
उत्तर
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is `"e"^-y = "e"^(x^2)` + c.
Explanation:
The given differential equation is `("d"y)/("d"x) = 2x"e"^(x^2 - y)`
⇒ `("d"y)/("d"x) = 2x . "e"^(x^2) . "e"^-y`
⇒ `("d"y)/("e"^-y) = 2x . "e"^(x^2) "d"x`
Integrating both sides, we have
`int ("d"y)/("e"^-y) = int 2x . "e"^(x^2) "d"x`
⇒ `int "e"^y "d"y = int 2x . "e"^(x^2) "d"x`
Pit in R.H.S. x2 = t
∴ 2x dx = dt
∴ `int "e"^y "d"y = int "e"^"t" "dt"`
⇒ ey = et + c
⇒ ey = `"e"^(y^2) + "c"`
APPEARS IN
संबंधित प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
x (e2y − 1) dy + (x2 − 1) ey dx = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + 2y = \sin 3x\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.