मराठी

Find the particular solution of the differential equation  e^x √(1−y^2)dx+y/x dy=0 , given that y=1 when x=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation  `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0

उत्तर

We have:

`e^xsqrt(1−y2)dx+y/x dy=0   `

 `e^xsqrt(1−y2)dx=-y/x dy..........(1)`

Separating the variables in equation (1), we get:

`xe^xdx=-y/sqrt(1-y^2)dy.........(2)`

Integrating both sides of equation (2), we have:

`int xe^xdx=-inty/sqrt(1-y^2)dy ............(3)`

`Now,intxe^xdx=xe^x-e^x+C_1=e^x(x-1)+C_1.......(4)`

`"Let " I=-inty/sqrt(1-y^2)dy`

putting `1-y^2=t` we get,

`-2ydy=dt`

`-ydy=dt/2`

`I=1/2intdt/sqrtt`

`=1/2xx2t^(1/2)+C_2`

`=t^(1/2)+C_2`

`=(1-y^2)^(1/2)+C2.......(5)`

Putting the values in equation (3), we get

`e^x(x-1)+C_1=(1-y^2)^(1/2)+C_2`

`e^x(x-1)=(1-y^2)^(1/2)+C, "where " C=C_2-C_1.......(6)`

on putting y=1 and x=0 in equation (6) we get C=-1

The particular solution of the given differential equation is `e^x(x-1)=(1-y^2)-1`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


x2 dy + (x2 − xy + y2) dx = 0


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]


Solve the following differential equation:- \[x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Find the differential equation of all non-horizontal lines in a plane.


x + y = tan–1y is a solution of the differential equation `y^2 "dy"/"dx" + y^2 + 1` = 0.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


y = aemx+ be–mx satisfies which of the following differential equation?


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×