Advertisements
Advertisements
प्रश्न
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
पर्याय
y =`"e"^(x - y) = x^2 "e"^-y + "c"`
`"e"^y - "e"^x = x^3/3 + "c"`
`"e"^x + "e"^y = x^3/3 + "c"`
`"e"^x - "e"^y = x^3/3 + "c"`
उत्तर
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is `"e"^y - "e"^x = x^3/3 + "c"`.
Explanation:
The given differential equation is `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y`
⇒ `("d"y)/("d"x) = "e"^x . "e"^-y + x^2 . "e"^-y`
⇒ `("d"y)/("d"x) = "e"^-y ("e"^x + x^2)`
⇒ `("d"y)/"e"^-y = ("e"^x + x^2)"d"x`
⇒ `"e"^y . "d"y = ("e"^x + x^2)"d"x`
Integrating both sides, we have
`int "e"^x "d"y = int ("e"^x + x^2) "d"x`
⇒ `"e"^y = "e"^x + x^3/3 + "c"`
⇒ `"e"^y - "e"^x = x^3/3 + "c"`
APPEARS IN
संबंधित प्रश्न
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Solve the differential equation:
`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
Which of the following differential equations has y = x as one of its particular solution?
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
The solution of `x ("d"y)/("d"x) + y` = ex is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.