Advertisements
Advertisements
प्रश्न
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
उत्तर
Given the differential equation
`dy/dx + y cot x = 4x cosec x` ....(1)
Comparing with the linear equation `dy/dx + Py = Q`,
When P = cot x, Q = 4x cosec x
∴ `I.F. = e^(int Pdx) = e^(int cot x dx) = e^(log |sin x|) = sin x`
∴ The solution is `y. (I.F.) = int Q. (I.F.) dx + C`
`therefore y sin x = int 4x cosec x sin x dx + C`
`= int 4x dx + C = + C`
`= (4x^2)/2 + C`
⇒ y sinx = 2x2 + C ....(2)
When `x = pi/2, y = 0`
∴ `0 = 2 (pi^2/4) + C`
⇒ `C = -pi^2/2`
Putting `C = pi^2/2` in (2),
`y sinx = 2x^2 - pi^2/2 ; (sin x ne 0)`
Which is the required solution.
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Find the differential equation representing the curve y = cx + c2.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = Ax : xy′ = y (x ≠ 0)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \frac{y}{x} = x^2\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `"dy"/"dx" + "a"y` = emx
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.