मराठी

Find a particular solution of the differential equation dydx+ycotx=4xcosecx(x≠0), given that y = 0 when x=π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`

बेरीज

उत्तर

Given the differential equation

`dy/dx + y cot x =  4x  cosec  x`                  ....(1)

Comparing with the linear equation `dy/dx + Py = Q`,

When  P = cot x, Q = 4x cosec x

∴ `I.F. = e^(int Pdx) = e^(int cot x  dx) = e^(log |sin x|) = sin x`

∴ The solution is `y. (I.F.) = int Q. (I.F.)  dx + C`

`therefore y sin x = int 4x  cosec x sin x dx + C`

`= int 4x dx + C = +  C`

`= (4x^2)/2 + C`

⇒ y sinx  = 2x2 + C                   ....(2)

When `x = pi/2, y = 0`

∴ `0 = 2 (pi^2/4) + C`

⇒ `C = -pi^2/2`

Putting `C = pi^2/2` in (2),

`y sinx  = 2x^2 - pi^2/2 ; (sin x ne 0)`

Which is the required solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Differential Equations - Exercise 9.7 [पृष्ठ ४२१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 9 Differential Equations
Exercise 9.7 | Q 13 | पृष्ठ ४२१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the differential equation representing the curve y = cx + c2.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[\frac{dy}{dx} - y = \cos x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \frac{y}{x} = x^2\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


Find the general solution of `"dy"/"dx" + "a"y` = emx 


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×