हिंदी

Find a particular solution of the differential equation dydx+ycotx=4xcosecx(x≠0), given that y = 0 when x=π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`

योग

उत्तर

Given the differential equation

`dy/dx + y cot x =  4x  cosec  x`                  ....(1)

Comparing with the linear equation `dy/dx + Py = Q`,

When  P = cot x, Q = 4x cosec x

∴ `I.F. = e^(int Pdx) = e^(int cot x  dx) = e^(log |sin x|) = sin x`

∴ The solution is `y. (I.F.) = int Q. (I.F.)  dx + C`

`therefore y sin x = int 4x  cosec x sin x dx + C`

`= int 4x dx + C = +  C`

`= (4x^2)/2 + C`

⇒ y sinx  = 2x2 + C                   ....(2)

When `x = pi/2, y = 0`

∴ `0 = 2 (pi^2/4) + C`

⇒ `C = -pi^2/2`

Putting `C = pi^2/2` in (2),

`y sinx  = 2x^2 - pi^2/2 ; (sin x ne 0)`

Which is the required solution.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.7 [पृष्ठ ४२१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.7 | Q 13 | पृष्ठ ४२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the differential equation representing the curve y = cx + c2.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

xy = log y + C :  `y' = (y^2)/(1 - xy) (xy != 1)`


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that

\[y = \frac{\pi}{2}\] when x = 1.

Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×