हिंदी

Find the general solution of dydx(x+2y3) dydx = y - Mathematics

Advertisements
Advertisements

प्रश्न

Find the general solution of `(x + 2y^3)  "dy"/"dx"` = y

योग

उत्तर

Given equation is `(x + 2y^3)  "dy"/"dx"` = y

⇒ `"dy"/"dx" = y/(x + 2y^3)`

⇒ `"dx"/"dy" = (x + 2y^3)/y`

⇒ `"dx"/"dy" = x/y + (2y^3)/y`

⇒ `"dx"/"dy" - x/y` = 2y3

Here P = `- 1/y` and Q = 2y2.

∴ Integrating factor I.F. = `"e"^(intPdy)`

= `"e"^(int 1/y dy)`

= `"e"^(-log y)`

= `"e"^(log 1/y)`

= `1/y`.

So the solution of the equation is

x.I.F. = `int "Q"."I"."F".  "d"y + "c"`

`x . 1/y = int 2y^2 . 1/y  "d"y + "c"`

⇒ `x/y = 2 int y  "d"y + "c"`

⇒ `x/y = 2. y^2/2 + "c"`

⇒ `x/y = y^2 + "c"`

So x = y3 + cy = y(y2 + c)

Hence, the required solution is x = y(y2 + c).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 10 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation `dy/dx=(y+sqrt(x^2+y^2))/x`


Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


If y = etan x+ (log x)tan x then find dy/dx


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


The population of a town grows at the rate of 10% per year. Using differential equation, find how long will it take for the population to grow 4 times.


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


(x + y − 1) dy = (x + y) dx


(x3 − 2y3) dx + 3x2 y dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.


The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.


The differential equation for which y = acosx + bsinx is a solution, is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


Solve the differential equation:

`(xdy - ydx)  ysin(y/x) = (ydx + xdy)  xcos(y/x)`.

Find the particular solution satisfying the condition that y = π when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×