Advertisements
Advertisements
प्रश्न
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
विकल्प
`1/x + 1/y` = c
logx . logy = c
xy = c
x + y = c
उत्तर
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is xy = c.
Explanation:
From the given equation,
We get logx + logy = logc giving xy = c.
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y – cos y = x : (y sin y + cos y + x) y′ = y
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find the general solution of `"dy"/"dx" + "a"y` = emx
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.