Advertisements
Advertisements
प्रश्न
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
उत्तर
We have
\[\frac{dy}{dx} = 2^{- y} \]
\[ \Rightarrow \frac{dy}{2^{- y}} = dx\]
\[ \Rightarrow 2^y dy = dx\]
Integrating both sides, we get
\[\int 2^y dy = \int dx\]
\[ \Rightarrow \frac{2^y}{\log2} = x + c\]
\[ \Rightarrow 2^y = x\log2 + k, \text { where } k = c\log2\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
cos (x + y) dy = dx
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(x2 + 1) dy + (2y − 1) dx = 0
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of `("d"y)/("d"x) -3y = sin2x`
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.