हिंदी

Write the Solution of the Differential Equation D Y D X = 2 − Y . - Mathematics

Advertisements
Advertisements

प्रश्न

Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .

उत्तर

We have

\[\frac{dy}{dx} = 2^{- y} \]

\[ \Rightarrow \frac{dy}{2^{- y}} = dx\]

\[ \Rightarrow 2^y dy = dx\]

Integrating both sides, we get

\[\int 2^y dy = \int dx\]

\[ \Rightarrow \frac{2^y}{\log2} = x + c\]

\[ \Rightarrow 2^y = x\log2 + k, \text { where } k = c\log2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Foreign Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


if `y = sin^(-1) (6xsqrt(1-9x^2))`, `1/(3sqrt2) < x < 1/(3sqrt2)` then find `(dy)/(dx)`


How many arbitrary constants are there in the general solution of the differential equation of order 3.


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


cos (x + y) dy = dx


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


(x2 + 1) dy + (2y − 1) dx = 0


`(2ax+x^2)(dy)/(dx)=a^2+2ax`


\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Find the differential equation of all non-horizontal lines in a plane.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.


Find the general solution of `("d"y)/("d"x) -3y = sin2x`


Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×