Advertisements
Advertisements
प्रश्न
Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1
उत्तर
We have,
\[\left( x + y \right)dy + \left( x - y \right)dx = 0\]
\[\frac{dy}{dx} = \frac{y - x}{x + y}\]
Let y = vx
\[\frac{dy}{dx} = v + x\frac{dv}{dx}\]
\[ \therefore v + x\frac{dv}{dx} = \frac{vx - x}{x + vx}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v - 1}{1 + v} - v\]
\[ \Rightarrow \frac{x dv}{dx} = \frac{v - 1 - v - v^2}{1 + v}\]
\[ \Rightarrow x\frac{dv}{dx} = - \left( \frac{v^2 + 1}{1 + v} \right)\]
\[ \Rightarrow \frac{1 + v}{v^2 + 1}dv = - \frac{1}{x}dx\]
Integrating both sides, we get
\[\int\frac{1 + v}{1 + v^2}dy = - \int\frac{1}{x}dx\]
\[\int\frac{1}{1^2 + v^2}dy + \frac{1}{2}\int\frac{2v}{1 + v^2} = - \int\frac{1}{x}dx\]
\[ \Rightarrow \tan^{- 1} v + \frac{1}{2}\log\left( 1 + v^2 \right) = - \log \left| x \right| + C\]
\[ \Rightarrow 2 \tan^{- 1} v + \log\left( 1 + v^2 \right) + 2\log \left| x \right| = 2C\]
\[ \Rightarrow 2 \tan^{- 1} v + \log\left( 1 + v^2 \right) x^2 = k\text{ where, }k = 2C\]
\[ \Rightarrow 2 \tan^{- 1} \frac{y}{x} + \log\left( 1 + \frac{y^2}{x^2} \right) x^2 = k\]
\[ \Rightarrow 2 \tan^{- 1} \frac{y}{x} + \log \left( x^2 + y^2 \right) = k . . . . . . . . . \left( 1 \right)\]
Now,
When x = 1, y = 1
\[ \therefore 2 \tan^{- 1} 1 + \log \left( 2 \right) = k\]
\[ \Rightarrow k = \frac{\pi}{2} + \log 2\]
Putting the value of `k` in (1), we get
\[2 \tan^{- 1} \frac{y}{x} + \log \left( x^2 + y^2 \right) = \frac{\pi}{2} + \log 2\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.
Find `(dy)/(dx)` at x = 1, y = `pi/4` if `sin^2 y + cos xy = K`
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
\[\frac{dy}{dx} = \left( x + y \right)^2\]
cos (x + y) dy = dx
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + 3y = e^{- 2x}\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
y dx + (x − y2) dy = 0
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
y = aemx+ be–mx satisfies which of the following differential equation?
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.