Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
उत्तर
Given differential equation is `x (dy)/(dx) = y(logy - logx + 1)`
⇒ `(dy)/(dx) = y/x(log y/x + 1)`
Put y = vx
⇒ `(dy)/(dx) = v + x(dv)/(dx)`
⇒ `v + x (dv)/(dx) = v(logv + 1)`
⇒ `(dv)/(vlogv) = (dx)/x`
On integrating both sides, we get
`int (dx)/x = int(dx)/x`
⇒ log(logv) = logx + logC
⇒ log(logv) = logCx
⇒ log(y/x) = Cx
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
If y = etan x+ (log x)tan x then find dy/dx
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
cos (x + y) dy = dx
(x + y − 1) dy = (x + y) dx
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Find the differential equation of all non-horizontal lines in a plane.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
If the solution curve of the differential equation `(dy)/(dx) = (x + y - 2)/(x - y)` passes through the point (2, 1) and (k + 1, 2), k > 0, then ______.