हिंदी

For the Following Differential Equation, Find a Particular Solution Satisfying the Given Condition:- D Y D X = Y Tan X , Y = 1 When X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]

योग

उत्तर

We have,

\[\frac{dy}{dx} = y \tan x\]

\[ \Rightarrow \frac{1}{y}dy = \tan x dx\]

Integrating both sides, we get

\[\int\frac{1}{y}dy = \int\tan x dx\]

\[ \Rightarrow \log y = \log \left| \sec x \right| + C . . . . . . . \left( 1 \right)\]

Now,

When `x = 0, y = 1`

\[ \therefore \log 1 = \log 1 + C\]

\[ \Rightarrow C = 0\]

Putting the value of `C` in (1), we get

\[\log y = \log \left| \sec x \right|\]

\[ \Rightarrow y = \sec x\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Revision Exercise [पृष्ठ १४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Revision Exercise | Q 65.3 | पृष्ठ १४६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is


The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is


cos (x + y) dy = dx


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[\frac{dy}{dx} - y \tan x = e^x \sec x\]


\[\frac{dy}{dx} - y \tan x = e^x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0  "given that"  "y" = 0  "when"  "x" = 1`.


Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.


Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`


Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`


Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.

`(dy)/(dx) + ycotx = 2/(1 + sinx)`


Which of the following differential equations has `y = x` as one of its particular solution?


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×