Advertisements
Advertisements
प्रश्न
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
उत्तर
We have,
\[\frac{dy}{dx} = y \tan x\]
\[ \Rightarrow \frac{1}{y}dy = \tan x dx\]
Integrating both sides, we get
\[\int\frac{1}{y}dy = \int\tan x dx\]
\[ \Rightarrow \log y = \log \left| \sec x \right| + C . . . . . . . \left( 1 \right)\]
Now,
When `x = 0, y = 1`
\[ \therefore \log 1 = \log 1 + C\]
\[ \Rightarrow C = 0\]
Putting the value of `C` in (1), we get
\[\log y = \log \left| \sec x \right|\]
\[ \Rightarrow y = \sec x\]
APPEARS IN
संबंधित प्रश्न
Solve the differential equation: `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of the differential equation \[\frac{dy}{dx} + 1 = e^{x + y}\], is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
cos (x + y) dy = dx
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
\[\frac{dy}{dx} - y \tan x = e^x\]
(1 + y + x2 y) dx + (x + x3) dy = 0
\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
`(dy)/(dx)+ y tan x = x^n cos x, n ne− 1`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]
Solve the differential equation : `("x"^2 + 3"xy" + "y"^2)d"x" - "x"^2 d"y" = 0 "given that" "y" = 0 "when" "x" = 1`.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solve: `y + "d"/("d"x) (xy) = x(sinx + logx)`
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Which of the following differential equations has `y = x` as one of its particular solution?
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`