हिंदी

Find the particular solution of the differential equation (1+x^2)dy/dx=(e^(m tan^-1 x)-y), give that y=1 when x=0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.

उत्तर

`(1+x^2)dy/dx=(e^(mtan^-1 x)-y)`

`=>dy/dx=(e^(mtav^-1 x))/(1+x^2)-y/(1+x^2)`

`=>dy/dx+y/(1+x^2)=e^(m tan^-1 x)/(1+x^2)`

`P=1/(1+x^2), Q=e^(m tan^-1 x)/(1+x^2)`

`I.F=e^(intPdx)`

`=e^(int(1/(1+x^2))dx)`

`=e^(tan^-1 x)`

Thus the solution is

`ye^(intPdx)=intQe^(intPdx)dx`

`=>yxxe^(tan^-1 x)=inte^(m tan^-1 x)/(1+x^2) .e^(tan^-1 x)dx`

`=>yxxe^(tan^-1 x)=inte^((m+1) tan^-1 x)/(1+x^2)dx ...............(i)`

`inte^((m+1) tan^-1 x)/(1+x^2)dx.............(ii)`

`Let (m+1)tan^-1 x = z`

`(m+1)/(1+x^2)dx=dz`

`dx/(1+x^2)=(dz)/(m+1)`

Substituting in (ii),

`1/(m+1)inte^z dz`

`=e^z/(m+1)`

`=e^((m+1)tan^-1 x)`

Substituting in (i),

`=>y xx e^(tan^-1 x)=e^((m+1)tan^-1 x)/(m+1)+C..........(iii)`

Putting y=1 and x=1, in the above equation,

`=>yxxe^(tan^-1 1)=e^((m+1)tan^-1 x)/(m+1)+C`

`=>1 xx e^(pi/4) = e^((m+1)tan^-1 pi/4)/(m+1)+C`

`=>C= e^((m+1)tan^-1 pi/4)/(m+1)- e^(pi/4)`

Particular solution of the D.E. is `yxxe^(tan^-1x)=e^((m+1)tan^-1 x)/(m+1)+e^((m+1)tan^-1 pi/4)/(m+1)- e^(pi/4)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Panchkula Set 1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = Ax : xy′ = y (x ≠ 0)


Find a particular solution of the differential equation`(x + 1) dy/dx = 2e^(-y) - 1`, given that y = 0 when x = 0.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

\[\frac{dy}{dx} = \left( x + y \right)^2\]


(x2 + 1) dy + (2y − 1) dx = 0


\[x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y\]


Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 \log x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Find a particular solution of the following differential equation:- \[\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1\]


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.


The general solution of ex cosy dx – ex siny dy = 0 is ______.


The solution of the differential equation `("d"y)/("d"x) + (1 + y^2)/(1 + x^2)` is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


General solution of `("d"y)/("d"x) + y` = sinx is ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Find the general solution of the differential equation:

`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×