हिंदी

Find the particular solution of differential equation: dy/dx=(−x+ycosx)/(1+sinx) given that y=1 when x=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`

उत्तर

`dy/dx=-(x+ycosx)/(1+sinx)`

⇒ `dy/dx+cosx/(1+sinx)y=x/(1+sinx )" ......i"`

This is a linear differential equation with

`P=cosx/(1+sinx),Q =-x/(1+sinx)`

`:.I.F. = e^intcosx/(1+sinx)dx`

= `e^log(1+sinx)`

= 1+ sinx

Multiplying both the sides of i by I.F. = 1 + sinx, we get

`(1+sinx)dy/dx+ycosx=-x`

Integrating with respect to x, we get

`y(1+sinx)=int-xdx+C`

`=>y =(2C-x^2)/(2(1+sinx)) " ....(ii)"`

Given that y = 1 when x = 0

`:.1=(2C)/(2(1+0))`

⇒ C =1 ................(iii)

Put iii in ii , we get

`y = (2-x^2)/(2(1+sinx))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 N

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


If x = Φ(t) differentiable function of ‘ t ' then prove that `int f(x) dx=intf[phi(t)]phi'(t)dt`


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y – cos y = x :  (y sin y + cos y + x) y′ = y


Find the general solution of the differential equation `dy/dx + sqrt((1-y^2)/(1-x^2)) = 0.`


The general solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x}\] is


The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


cos (x + y) dy = dx


(x + y − 1) dy = (x + y) dx


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


\[\frac{dy}{dx} + 5y = \cos 4x\]


\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]


Find the equation of a curve passing through the point (0, 0) and whose differential equation is \[\frac{dy}{dx} = e^x \sin x.\]


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


The solution of the differential equation ydx + (x + xy)dy = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×