Advertisements
Advertisements
प्रश्न
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
विकल्प
y = 2 + x2
\[y = \frac{1 + x}{1 - x}\]
y = x (x − 1)
\[y = \frac{1 - x}{1 + x}\]
उत्तर
\[ \Rightarrow \left( x^2 + 1 \right)\frac{dy}{dx} = - \left( y^2 + 1 \right)\]
\[ \Rightarrow \frac{1}{\left( y^2 + 1 \right)}dy = - \frac{1}{\left( x^2 + 1 \right)}dx\]
Integrating both sides, we get
\[\int\frac{1}{\left( y^2 + 1 \right)}dy = - \int\frac{1}{\left( x^2 + 1 \right)}dx\]
\[ \Rightarrow \tan^{- 1} y = - \tan^{- 1} x + \tan^{- 1} C\]
\[ \Rightarrow \tan^{- 1} y + \tan^{- 1} x = \tan^{- 1} C\]
\[ \Rightarrow \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) = \tan^{- 1} C\]
\[ \Rightarrow \frac{x + y}{1 - xy} = C\]
\[ \Rightarrow x + y = 1 - xy\]
\[ \Rightarrow y + xy = 1 - x\]
\[ \Rightarrow y\left( 1 + x \right) = 1 - x\]
\[ \Rightarrow y = \frac{1 - x}{1 + x}\]
Notes
The initial value conditions are not given, so the final answer will be obatined only if \[C = 1.\]
APPEARS IN
संबंधित प्रश्न
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
If `y=sqrt(sinx+sqrt(sinx+sqrt(sinx+..... oo))),` then show that `dy/dx=cosx/(2y-1)`
The solution of the differential equation dy/dx = sec x – y tan x is:
(A) y sec x = tan x + c
(B) y sec x + tan x = c
(C) sec x = y tan x + c
(D) sec x + y tan x = c
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation dy/dx=1 + x + y + xy, given that y = 0 when x = 1.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x2 + 2x + C : y′ – 2x – 2 = 0
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
cos (x + y) dy = dx
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} - y = \cos x\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Find the differential equation of all non-horizontal lines in a plane.
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Solve the differential equation dy = cosx(2 – y cosecx) dx given that y = 2 when x = `pi/2`
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The general solution of ex cosy dx – ex siny dy = 0 is ______.
General solution of `("d"y)/("d"x) + ytanx = secx` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
Find the general solution of the differential equation:
`(dy)/(dx) = (3e^(2x) + 3e^(4x))/(e^x + e^-x)`