Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
उत्तर
\[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \cos \left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)}\]
\[\text { This is a homogeneous differential equation } . \]
\[\text { Putting }y = vx and \frac{dy}{dx} = v + x\frac{dv}{dx}, \text { we get }\]
\[v + x\frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}\]
\[\Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{\cos v}\]
\[ \Rightarrow \cos v dv = \frac{1}{x}dx\]
\[\text { Integrating both sides, we get }\]
\[\int\cos v \ dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sin v = \log \left| x \right| + \log\left| C \right|\]
\[\text { Putting v }= \frac{y}{x}, we get\]
\[\sin\frac{y}{x} = \log \left| Cx \right|\]
\[\text { which is the general solution of the given differential equation } .\]
APPEARS IN
संबंधित प्रश्न
Solve : 3ex tanydx + (1 +ex) sec2 ydy = 0
Also, find the particular solution when x = 0 and y = π.
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
xy = log y + C : `y' = (y^2)/(1 - xy) (xy != 1)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Find the differential equation of the family of concentric circles `x^2 + y^2 = a^2`
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
\[\frac{dy}{dx} + 1 = e^{x + y}\]
\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]
Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.