हिंदी

The Solution of the Differential Equation D Y D X + 2 Y X = 0 with Y(1) = 1 is Given by - Mathematics

Advertisements
Advertisements

प्रश्न

The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by

विकल्प

  • \[y = \frac{1}{x^2}\]

  • \[x = \frac{1}{y^2}\]

  • \[x = \frac{1}{y}\]

  • \[y = \frac{1}{x}\]

MCQ

उत्तर

\[y = \frac{1}{x^2}\]

 

We have,
\[\frac{dy}{dx} + \frac{2y}{x} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2y}{x}\]
\[ \Rightarrow \frac{1}{2} \times \frac{1}{y}dy = \frac{- 1}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{1}{y}dy = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log y = - \log x + \log C\]
\[ \Rightarrow \log y^\frac{1}{2} + \log x = \log C\]
\[ \Rightarrow \log\left( \sqrt{y}x \right) = \log C\]
\[ \Rightarrow \sqrt{y}x = C . . . . . \left( 1 \right)\]
\[\text{ As }\left( 1 \right)\text{ satisfies }y\left( 1 \right) = 1,\text{ we get }\]
\[1 = C\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\sqrt{y}x = 1\]
\[ \Rightarrow y = \frac{1}{x^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 11 | पृष्ठ १४०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

The differential equation of the family of curves y=c1ex+c2e-x is......

(a)`(d^2y)/dx^2+y=0`

(b)`(d^2y)/dx^2-y=0`

(c)`(d^2y)/dx^2+1=0`

(d)`(d^2y)/dx^2-1=0`


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Find the particular solution of the differential equation

(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.


Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

x + y = tan–1y   :   y2 y′ + y2 + 1 = 0


The number of arbitrary constants in the particular solution of a differential equation of third order are ______.


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


If y = etan x+ (log x)tan x then find dy/dx


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents


The solution of x2 + y \[\frac{dy}{dx}\]= 4, is


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


x (e2y − 1) dy + (x2 − 1) ey dx = 0


cos (x + y) dy = dx


(x2 + 1) dy + (2y − 1) dx = 0


\[\cos^2 x\frac{dy}{dx} + y = \tan x\]


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is `(2x)/y^2.`


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


If y = e–x (Acosx + Bsinx), then y is a solution of ______.


Solution of differential equation xdy – ydx = 0 represents : ______.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______. 


Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.


The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The member of arbitrary constants in the particulars solution of a differential equation of third order as


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×