Advertisements
Advertisements
प्रश्न
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
विकल्प
\[y = \frac{1}{x^2}\]
\[x = \frac{1}{y^2}\]
\[x = \frac{1}{y}\]
\[y = \frac{1}{x}\]
उत्तर
\[y = \frac{1}{x^2}\]
We have,
\[\frac{dy}{dx} + \frac{2y}{x} = 0\]
\[ \Rightarrow \frac{dy}{dx} = \frac{- 2y}{x}\]
\[ \Rightarrow \frac{1}{2} \times \frac{1}{y}dy = \frac{- 1}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{1}{y}dy = - \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log y = - \log x + \log C\]
\[ \Rightarrow \log y^\frac{1}{2} + \log x = \log C\]
\[ \Rightarrow \log\left( \sqrt{y}x \right) = \log C\]
\[ \Rightarrow \sqrt{y}x = C . . . . . \left( 1 \right)\]
\[\text{ As }\left( 1 \right)\text{ satisfies }y\left( 1 \right) = 1,\text{ we get }\]
\[1 = C\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\sqrt{y}x = 1\]
\[ \Rightarrow y = \frac{1}{x^2}\]
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Solve the differential equation `dy/dx -y =e^x`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y sqrt(1 + x^2) : y' = (xy)/(1+x^2)`
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
x + y = tan–1y : y2 y′ + y2 + 1 = 0
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`
If y = etan x+ (log x)tan x then find dy/dx
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The solution of the differential equation \[2x\frac{dy}{dx} - y = 3\] represents
The solution of x2 + y2 \[\frac{dy}{dx}\]= 4, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is
x (e2y − 1) dy + (x2 − 1) ey dx = 0
cos (x + y) dy = dx
(x2 + 1) dy + (2y − 1) dx = 0
\[\cos^2 x\frac{dy}{dx} + y = \tan x\]
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
y dx + (x − y2) dy = 0
Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (x, y) is `(2x)/y^2.`
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
If y = e–x (Acosx + Bsinx), then y is a solution of ______.
Solution of differential equation xdy – ydx = 0 represents : ______.
Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.
The number of solutions of `("d"y)/("d"x) = (y + 1)/(x - 1)` when y (1) = 2 is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The general solution of `("d"y)/("d"x) = 2x"e"^(x^2 - y)` is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The member of arbitrary constants in the particulars solution of a differential equation of third order as
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`